Framfarir í handskrift hjá grunnskólabörnun í Reykjavík: Langsniðsrannsókn 1999–2005

Árið 1984 var gerð róttað breyting á handskriftarkennslu í íslenskum grunnskóllum þegar nýtt forskriftarletur var tekið í notkun. Markmið þeirrar rannsóknar sem hér er lýst var í fyrsta lagi að kanna framfarir í handskrift hjá grunnskólabörnunum eftir að nýja letrið var tekið í notkun. Í þessu skyni var fylgst með framfórum 160 grunnskólabarna í Reykjavík í 1.–6. bekk. Breytingin á forskriftarletrinu virðist meðal annars hafa verið rökstudd með þeirri skoðun að gamla letrið hægði á framfórum í skrift hjá börnumum. Í öðru lagi var það því markmið þessarar rannsóknar að greina það þætti sem torvelduðu framfarir barnanna í handskrift. Greiningin sýndi að það sem mest torvelduð framfarir var að börnin lærðu bókstafaformin ekki rétt þegar þau voru kennd í fyrsta sinn, ekki gerð forskriftarletursins.

Efnisorð: Ísland, handskrift, forskriftarletur, framfarir

ABSTRACT

In an attempt to reduce an alleged growing handwriting dysfunction among children in Icelandic schools an un-looped cursive style replaced a looped cursive style as a model alphabet for handwriting instruction in the period 1984–1990. This study surveys the results of this exchange and its influence on handwriting dysfunction. The progress in handwriting proficiency of 160 children from ten school classes in Reykjavík was monitored in a longitudinal experimental design over a period of six years. To estimate the children’s readiness for learning handwriting a test of visual motor integration was given at the beginning of Grade 1. The handwriting quality for each child was measured at the end of each grade from Grades 1–6 and the handwriting speed at the end of each grade in Grades 3–6. Handwriting quality was measured by analysing handwriting samples where the quality of each individual letter form was judged as correctly or incorrectly written in comparison to the corresponding letter form as given by the model alphabet. The quality score for a handwriting sample was given as the fraction of correctly written letter forms in the sample. Handwriting speed was measured by counting the number of letters written over a period of two minutes. By averaging the quality and speed scores for individual handwriting samples at each grade, average developmental profiles for handwriting quality and speed were established. By averaging the quality scores given for each letter form the results of the teaching of each individual letter form could be established.

The average developmental profile for handwriting quality showed that progress is fast during the first year of cursive handwriting instruction in Grade 2 when the children on the average learned to write 17.4 letterforms correctly out of the 28 letterforms tested. During the next three years only about two correctly written letters were added each year. The reason for this difference in progression is believed to be the difference in emphasis on teaching letter forms in Grade 3 and the subsequent grades. The average developmental profile for handwriting speed shows a steady increase in speed through the grades in Grades 3–6. Thus, it appears that handwriting exercise improves the speed but does not influence the quality in the same way. The average quality and speed profiles are similar to corresponding profiles obtained in primary schools in the United States and Norway. The conclusion is that the new handwriting model has been successfully introduced.

To enquire into the roots of handwriting dysfunction three different groups of children were established. Group A, consisting of the 9 children who at the end of Grade 3 wrote all letters correctly according to the model, Group B, consisting of the 11 children with average performance in handwriting quality and Group C, consisting of the 35 children that constitute the 22% of low performers in handwriting quality.
Analysis of the results from the visual motor integration test with respect to the three groups indicated that visual motor integration did not contribute much to handwriting dysfunction. Analysis of the handwriting quality profiles with respect to the three groups indicated that the main difference between the groups was in the development of quality throughout Grade 2 when the letter forms were taught. The number of letters the children on the average could write correctly at the end of Grade 2 was 22.4 in Group A, 16.8 in Group B and 13.3 in Group C and this difference was maintained more or less from Grade 3–6. Thus it was concluded that the teaching of letter forms in Grade 2 resulted in curbing the development in handwriting quality.

Examination of the average scores for individual letter forms showed a considerable variation in the letter form scores. It is reasonable to assume that, for each individual child, the result of learning the form of a specific letter depends on an interaction between the difficulty of the graphic form of the letter, the abilities of the child and the teaching quality. Then, taking into account that equal time was spent on teaching each form, the average of over 160 children, ten teachers and three schools may be expected to cancel the children’s and teachers’ contributions to the variation and therefore it will mainly reflect the effect of the graphic form. Thus, ranging the letter forms according to the average letter score may be interpreted as ranging the letter forms according to the difficulty of the graphic form. Using the average scores for the letters at the end of Grade 3 when the first formal teaching of letter forms and joins was completed, the letter forms could be classified into three difficulty classes with approximately equal numbers of letters in each class. It was then found that it was likely that the children did not master the difficult letters (p, r, j, f, m, g, k) as well as the easy letters (i, v, l, a, o, h, u). Thus it was concluded that the main reason for handwriting dysfunction is that too little effort was invested in the teaching of difficult letter forms in Grade 2 and 3. There was no indication that the new model alphabet reduced handwriting dysfunction.

*Keywords:* Iceland, handwriting, model alphabet, dysfunction
ABOUT THE AUTHORS

Ragnheidur Karlsdottir (ragnheidur.karlsdottir@svt.ntnu.no) was for several years a teacher at primary and secondary level in Iceland and Norway. She completed her master’s degree in education at the Norwegian University of Science and Technology in 1985 and her doctoral degree in the same subject there in 1996. She is now a professor of educational psychology at the Norwegian University of Science and Technology in Trondheim. Her main area of research is development of knowledge of primary school children with primary attention to handwriting, reading and spelling. She has also done work on development and management of knowledge in companies, institutions and organizations.

Thorarinn Stefansson (thorarinn.stefansson@simnet.is) was associate professor in engineering physics at the Norwegian University of Science and Technology in Trondheim. He completed his degree in engineering physics from The Norwegian Institut of Technology in 1966 and his doctoral degree in experimental physics there in 1976. His main area of research was experimental research on the properties of ionized gases. He has developed methods for teaching science in the laboratory, investigated the formation of tacit knowledge and children’s development of the handwriting skill. He is presently engaged in research and teaching of educational psychology.